Cycle lengths and chromatic number of graphs
نویسندگان
چکیده
منابع مشابه
Cycle lengths and chromatic number of graphs
For a simple 5nite graph G let Co(G) and Ce(G) denote the set of odd cycle lengths and even cycle lengths in a graph G, respectively. We will show that the chromatic number (G) of G satis5es: (G)6min{2r + 2; 2s+ 3}6 r + s+ 2, if |Co(G)|= r and |Ce(G)|= s. c © 2004 Elsevier B.V. All rights reserved. MSC: 05C15
متن کاملThe locating-chromatic number for Halin graphs
Let G be a connected graph. Let f be a proper k -coloring of G and Π = (R_1, R_2, . . . , R_k) bean ordered partition of V (G) into color classes. For any vertex v of G, define the color code c_Π(v) of v with respect to Π to be a k -tuple (d(v, R_1), d(v, R_2), . . . , d(v, R_k)), where d(v, R_i) is the min{d(v, x)|x ∈ R_i}. If distinct vertices have distinct color codes, then we call f a locat...
متن کاملThe locating chromatic number of the join of graphs
Let $f$ be a proper $k$-coloring of a connected graph $G$ and $Pi=(V_1,V_2,ldots,V_k)$ be an ordered partition of $V(G)$ into the resulting color classes. For a vertex $v$ of $G$, the color code of $v$ with respect to $Pi$ is defined to be the ordered $k$-tuple $c_{{}_Pi}(v)=(d(v,V_1),d(v,V_2),ldots,d(v,V_k))$, where $d(v,V_i)=min{d(v,x):~xin V_i}, 1leq ileq k$. If distinct...
متن کاملChromatic Harmonic Indices and Chromatic Harmonic Polynomials of Certain Graphs
In the main this paper introduces the concept of chromatic harmonic polynomials denoted, $H^chi(G,x)$ and chromatic harmonic indices denoted, $H^chi(G)$ of a graph $G$. The new concept is then applied to finding explicit formula for the minimum (maximum) chromatic harmonic polynomials and the minimum (maximum) chromatic harmonic index of certain graphs. It is also applied to split graphs and ce...
متن کاملGame chromatic number of graphs
y Abstract We show that if a graph has acyclic chromatic number k, then its game chromatic number is at most k(k + 1). By applying the known upper bounds for the acyclic chromatic numbers of various classes of graphs, we obtain upper bounds for the game chromatic number of these classes of graphs. In particular, since a planar graph has acyclic chromatic number at most 5, we conclude that the g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 2004
ISSN: 0012-365X
DOI: 10.1016/j.disc.2003.11.055